Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 26
Filter
1.
Vaccine ; 2023 Jun 08.
Article in English | MEDLINE | ID: covidwho-20234674

ABSTRACT

BACKGROUND: We aimed to estimate vaccine effectiveness (VE) against COVID-19 mortality, and to explore whether an increased risk of non-COVID-19 mortality exists in the weeks following a COVID-19 vaccine dose. METHODS: National registries of causes of death, COVID-19 vaccination, specialized health care and long-term care reimbursements were linked by a unique person identifier using data from 1 January 2021 to 31 January 2022. We used Cox regression with calendar time as underlying time scale to, firstly, estimate VE against COVID-19 mortality after primary and first booster vaccination, per month since vaccination and, secondly, estimate risk of non-COVID-19 mortality in the 5 or 8 weeks following a first, second or first booster dose, adjusting for birth year, sex, medical risk group and country of origin. RESULTS: VE against COVID-19 mortality was > 90 % for all age groups two months after completion of the primary series. VE gradually decreased thereafter, to around 80 % at 7-8 months post-primary series for most groups, and around 60 % for elderly receiving a high level of long-term care and for people aged 90+ years. Following a first booster dose, the VE increased to > 85 % in all groups. The risk of non-COVID-19 mortality was lower or similar in the 5 or 8 weeks following a first dose compared to no vaccination, as well as following a second dose compared to one dose and a booster compared to two doses, for all age and long-term care groups. CONCLUSION: At the population level, COVID-19 vaccination greatly reduced the risk of COVID-19 mortality and no increased risk of death from other causes was observed.

2.
J Infect Dis ; 2023 Apr 24.
Article in English | MEDLINE | ID: covidwho-2327889

ABSTRACT

INTRODUCTION: We aimed to estimate vaccine effectiveness against infection (VE-infection) and against further transmission (VE-infectiousness) in a household setting during Delta and Omicron. Knowing these effects can aid policy makers in deciding which groups to prioritize for vaccination. METHODS: Participants with a positive SARS-CoV-2 test were asked about COVID-19 vaccination status and SARS-CoV-2 testing of their household members one month later. VE-infection and VE-infectiousness was estimated using GEE logistic regression adjusting for age, vaccination status, calendar week and household size. RESULTS: 3,399 questionnaires concerning 4,105 household members were included. During the Delta-period, VE-infection of primary series was 47% (95% CI: -27%; 78%) and VE-infectiousness of primary series was 70% (95% CI: 28%; 87%). During the Omicron-period, VE-infection was -36% (95% CI: -88%; 1%) for primary series and -28% (95% CI: -77%; 7%) for booster vaccination. The VE-infectiousness was 45% (95% CI: -14%; 74%) for primary series and 64% (95% CI: 31%; 82%) for booster vaccination. DISCUSSION: Our study shows that COVID-19 vaccination is effective against infection with SARS-CoV-2 Delta and against infectiousness of SARS-CoV-2 Delta and Omicron. Estimation of VE against infection with SARS-CoV-2 Omicron was limited by several factors. Our results support booster vaccination for those in close contact with vulnerable people to prevent transmission.

3.
Vaccine ; 41(26): 3847-3854, 2023 06 13.
Article in English | MEDLINE | ID: covidwho-2320091

ABSTRACT

BACKGROUND: Vaccines against COVID-19 have proven effective in preventing COVID-19 hospitalisation. In this study, we aimed to quantify part of the public health impact of COVID-19 vaccination by estimating the number of averted hospitalisations. We present results from the beginning of the vaccination campaign ('entire period', January 6, 2021) and a subperiod starting at August 2, 2021 ('subperiod') when all adults had the opportunity to complete their primary series, both until August 30, 2022. METHODS: Using calendar-time specific vaccine effectiveness (VE) estimates and vaccine coverage (VC) by round (primary series, first booster and second booster) and the observed number of COVID-19 associated hospitalisations, we estimated the number of averted hospitalisations per age group for the two study periods. From January 25, 2022, when registration of the indication of hospitalisation started, hospitalisations not causally related to COVID-19 were excluded. RESULTS: In the entire period, an estimated 98,170 (95 % confidence interval (CI) 96,123-99,928) hospitalisations were averted, of which 90,753 (95 % CI 88,790-92,531) were in the subperiod, representing 57.0 % and 67.9 % of all estimated hospital admissions. Estimated averted hospitalisations were lowest for 12-49-year-olds and highest for 70-79-year-olds. More admissions were averted in the Delta period (72.3 %) than in the Omicron period (63.4 %). CONCLUSION: COVID-19 vaccination prevented a large number of hospitalisations. Although the counterfactual of having had no vaccinations while maintaining the same public health measures is unrealistic, these findings underline the public health importance of the vaccination campaign to policy makers and the public.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Netherlands , Vaccination , Hospitalization
4.
Int J Infect Dis ; 133: 36-42, 2023 Aug.
Article in English | MEDLINE | ID: covidwho-2296740

ABSTRACT

OBJECTIVES: We estimated vaccine effectiveness (VE) of primary and booster vaccinations against SARS-CoV-2 infection overall and in four risk groups defined by age and medical risk condition during the Delta and Omicron BA.1/BA.2 periods. METHODS: VAccine Study COvid-19 is an ongoing prospective cohort study among Dutch adults. The primary end point was a self-reported positive SARS-CoV-2 test from July 12, 2021 to June 06, 2022. The analyses included only participants without a previous SARS-CoV-2 infection based on a positive test or serology. We used Cox proportional hazard models with vaccination status as the time-varying exposure and adjustment for age, sex, educational level, and medical risk condition. RESULTS: A total of 37,170 participants (mean age 57 years) were included. In the Delta period, VE <6 weeks after the primary vaccination was 80% (95% confidence interval 69-87) and decreased to 71% (65-77) after 6 months. VE increased to 96% (86-99) shortly after the first booster vaccination. In the Omicron period, these estimates were 46% (22-63), 25% (8-39), and 57% (52-62), respectively. For the Omicron period, an interaction term between vaccination status and risk group significantly improved the model (P <0.001), with generally lower VEs for those with a medical risk condition. CONCLUSION: Our results show the benefit of booster vaccinations against infection, also in risk groups; although, the additional protection wanes quite rapidly.


Subject(s)
COVID-19 , Adult , Humans , Middle Aged , COVID-19/epidemiology , COVID-19/prevention & control , Netherlands/epidemiology , Vaccine Efficacy , COVID-19 Vaccines , SARS-CoV-2 , Prospective Studies , Vaccination
5.
Euro Surveill ; 28(7)2023 02.
Article in English | MEDLINE | ID: covidwho-2263556

ABSTRACT

We used data of 32,542 prospective cohort study participants who previously received primary and one or two monovalent booster COVID-19 vaccinations. Between 26 September and 19 December 2022, relative effectiveness of bivalent original/Omicron BA.1 vaccination against self-reported Omicron SARS-CoV-2 infection was 31% in 18-59-year-olds and 14% in 60-85-year-olds. Protection of Omicron infection was higher than of bivalent vaccination without prior infection. Although bivalent booster vaccination increases protection against COVID-19 hospitalisations, we found limited added benefit in preventing SARS-CoV-2 infection.


Subject(s)
COVID-19 , Humans , Netherlands/epidemiology , COVID-19/prevention & control , Prospective Studies , SARS-CoV-2/genetics , RNA, Messenger , Vaccination
6.
Euro Surveill ; 28(7)2023 02.
Article in English | MEDLINE | ID: covidwho-2249566

ABSTRACT

BackgroundIn summer 2022, SARS-CoV-2 Omicron BA.5 became dominant in Europe. In vitro studies have shown a large reduction of antibody neutralisation for this variant.AimWe aimed to investigate differences in protection from previous infection and/or vaccination against infection with Omicron BA.4/5 vs BA.2.MethodsWe employed a case-only approach including positive PCR tests from community testing between 2 May and 24 July 2022 that were tested for S gene target failure (SGTF), which distinguishes BA.4/5 from BA.2 infection. Previous infections were categorised by variant using whole genome sequencing or SGTF. We estimated by logistic regression the association of SGTF with vaccination and/or previous infection, and of SGTF of the current infection with the variant of the previous infection, adjusting for testing week, age group and sex.ResultsThe percentage of registered previous SARS-CoV-2 infections was higher among 19,836 persons infected with Omicron BA.4/5 than among 7,052 persons infected with BA.2 (31.3% vs 20.0%). Adjusting for testing week, age group and sex, the adjusted odds ratio (aOR) was 1.4 (95% CI: 1.3-1.5). The distribution of vaccination status did not differ for BA.4/5 vs BA.2 infections (aOR = 1.1 for primary and booster vaccination). Among persons with a previous infection, those currently infected with BA4/5 had a shorter interval between infections, and the previous infection was more often caused by BA.1, compared with those currently infected with BA.2 (aOR = 1.9; 95% CI: 1.5-2.6).ConclusionOur results suggest immunity induced by BA.1 is less effective against BA.4/5 infection than against BA.2 infection.


Subject(s)
COVID-19 , Humans , Netherlands/epidemiology , COVID-19/epidemiology , SARS-CoV-2/genetics , Europe , Immunization, Secondary
7.
Clin Infect Dis ; 74(12): 2173-2180, 2022 07 06.
Article in English | MEDLINE | ID: covidwho-2188401

ABSTRACT

BACKGROUND: In response to the recent serogroup W invasive meningococcal disease (IMD-W) epidemic in the Netherlands, meningococcal serogroup C (MenC) conjugate vaccination for children aged 14 months was replaced with a MenACWY conjugate vaccination, and a mass campaign targeting individuals aged 14-18 years was executed. We investigated the impact of MenACWY vaccination implementation in 2018-2020 on incidence rates and estimated vaccine effectiveness (VE). METHODS: We extracted IMD cases diagnosed between July 2014 and December 2020 from the national surveillance system. We calculated age group-specific incidence rate ratios by comparing incidence rates before (July 2017-March 2018) and after (July 2019-March 2020) MenACWY vaccination implementation. We estimated VE in vaccine-eligible cases using the screening method. RESULTS: Overall, the IMD-W incidence rate declined by 61% (95% confidence interval [CI], 40 to 74). It declined by 82% (95% CI, 18 to 96) in the vaccine-eligible age group (individuals aged 15-36 months and 14-18 years) and by 57% (95% CI, 34 to 72) in vaccine-noneligible age groups. VE was 92% (95% CI, -20 to 99.5) in vaccine-eligible toddlers (aged 15-36 months). No IMD-W cases were reported in vaccine-eligible teenagers after the campaign. CONCLUSIONS: The MenACWY vaccination program was effective in preventing IMD-W in the target population. The IMD-W incidence reduction in vaccine-noneligible age groups may be caused by indirect effects of the vaccination program. However, disentangling natural fluctuation from vaccine effect was not possible. Our findings encourage the use of toddler and teenager MenACWY vaccination in national immunization programs.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup C , Adolescent , Humans , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Netherlands/epidemiology , Serogroup , Vaccination/methods , Vaccines, Conjugate
8.
Euro Surveill ; 28(1)2023 Jan.
Article in English | MEDLINE | ID: covidwho-2198367

ABSTRACT

In 2022, a sevenfold increase in the number of notifiable invasive Streptococcus pyogenes (iGAS) infections among children aged 0-5 years was observed in the Netherlands compared with pre-COVID-19 pandemic years. Of 42 cases in this age group, seven had preceding or coinciding varicella zoster infections, nine were fatal. This increase is not attributable to a specific emm type. Vigilance for clinical deterioration as iGAS sign is warranted in young children, especially those with varicella zoster infection.


Subject(s)
COVID-19 , Chickenpox , Herpes Zoster , Streptococcal Infections , Child , Humans , Child, Preschool , Adult , Streptococcus pyogenes , Streptococcal Infections/diagnosis , Streptococcal Infections/epidemiology , Netherlands/epidemiology , Pandemics
9.
Euro Surveill ; 27(45)2022 11.
Article in English | MEDLINE | ID: covidwho-2117963

ABSTRACT

BackgroundDifferential SARS-CoV-2 exposure between vaccinated and unvaccinated individuals may confound vaccine effectiveness (VE) estimates.AimWe conducted a test-negative case-control study to determine VE against SARS-CoV-2 infection and the presence of confounding by SARS-CoV-2 exposure.MethodsWe included adults tested for SARS-CoV-2 at community facilities between 4 July and 8 December 2021 (circulation period of the Delta variant). The VE against SARS-CoV-2 infection after primary vaccination with an mRNA (Comirnaty or Spikevax) or vector-based vaccine (Vaxzevria or Janssen) was calculated using logistic regression adjusting for age, sex and calendar week (Model 1). We additionally adjusted for comorbidity and education level (Model 2) and SARS-CoV-2 exposure (number of close contacts, visiting busy locations, household size, face mask wearing, contact with SARS-CoV-2 case; Model 3). We stratified by age, vaccine type and time since vaccination.ResultsVE against infection (Model 3) was 64% (95% CI: 50-73), only slightly lower than in Models 1 (68%; 95% CI: 58-76) and 2 (67%; 95% CI: 56-75). Estimates stratified by age group, vaccine and time since vaccination remained similar: mRNA VE (Model 3) among people ≥ 50 years decreased significantly (p = 0.01) from 81% (95% CI: 66-91) at < 120 days to 61% (95% CI: 22-80) at ≥ 120 days after vaccination. It decreased from 83% to 59% in Model 1 and from 81% to 56% in Model 2.ConclusionSARS-CoV-2 exposure did not majorly confound the estimated COVID-19 VE against infection, suggesting that VE can be estimated accurately using routinely collected data without exposure information.


Subject(s)
COVID-19 Vaccines , COVID-19 , Adult , Humans , Middle Aged , Netherlands/epidemiology , COVID-19/epidemiology , COVID-19/prevention & control , Case-Control Studies , Vaccine Efficacy , SARS-CoV-2 , RNA, Messenger
10.
Nat Commun ; 13(1): 4738, 2022 08 12.
Article in English | MEDLINE | ID: covidwho-1991583

ABSTRACT

Given the emergence of the SARS-CoV-2 Omicron BA.1 and BA.2 variants and the roll-out of booster COVID-19 vaccination, evidence is needed on protection conferred by primary vaccination, booster vaccination and previous SARS-CoV-2 infection by variant. We employed a test-negative design on S-gene target failure data from community PCR testing in the Netherlands from 22 November 2021 to 31 March 2022 (n = 671,763). Previous infection, primary vaccination or both protected well against Delta infection. Protection against Omicron BA.1 infection was much lower compared to Delta. Protection was similar against Omicron BA.1 compared to BA.2 infection after previous infection, primary and booster vaccination. Higher protection was observed against all variants in individuals with both vaccination and previous infection compared with either one. Protection against all variants decreased over time since last vaccination or infection. We found that primary vaccination with current COVID-19 vaccines and previous SARS-CoV-2 infections offered low protection against Omicron BA.1 and BA.2 infection. Booster vaccination considerably increased protection against Omicron infection, but decreased rapidly after vaccination.


Subject(s)
COVID-19 , Viral Vaccines , COVID-19/prevention & control , COVID-19 Vaccines , Humans , SARS-CoV-2 , Vaccination
11.
Eur J Epidemiol ; 37(10): 1035-1047, 2022 Oct.
Article in English | MEDLINE | ID: covidwho-1990695

ABSTRACT

The impact of COVID-19 on population health is recognised as being substantial, yet few studies have attempted to quantify to what extent infection causes mild or moderate symptoms only, requires hospital and/or ICU admission, results in prolonged and chronic illness, or leads to premature death. We aimed to quantify the total disease burden of acute COVID-19 in the Netherlands in 2020 using the disability-adjusted life-years (DALY) measure, and to investigate how burden varies between age-groups and occupations. Using standard methods and diverse data sources (mandatory notifications, population-level seroprevalence, hospital and ICU admissions, registered COVID-19 deaths, and the literature), we estimated years of life lost (YLL), years lived with disability, DALY and DALY per 100,000 population due to COVID-19, excluding post-acute sequelae, stratified by 5-year age-group and occupation category. The total disease burden due to acute COVID-19 was 286,100 (95% CI: 281,700-290,500) DALY, and the per-capita burden was 1640 (95% CI: 1620-1670) DALY/100,000, of which 99.4% consisted of YLL. The per-capita burden increased steeply with age, starting from 60 to 64 years, with relatively little burden estimated for persons under 50 years old. SARS-CoV-2 infection and associated premature mortality was responsible for a considerable direct health burden in the Netherlands, despite extensive public health measures. DALY were much higher than for other high-burden infectious diseases, but lower than estimated for coronary heart disease. These findings are valuable for informing public health decision-makers regarding the expected COVID-19 health burden among population subgroups, and the possible gains from targeted preventative interventions.


Subject(s)
COVID-19 , Disabled Persons , Humans , Middle Aged , Quality-Adjusted Life Years , Disability-Adjusted Life Years , Seroepidemiologic Studies , Netherlands/epidemiology , SARS-CoV-2 , Cost of Illness
12.
Microorganisms ; 10(5)2022 May 05.
Article in English | MEDLINE | ID: covidwho-1820340

ABSTRACT

COVID-19 control measures have resulted in a decline in invasive bacterial disease caused by Neisseria meningitidis (IMD), Streptococcus pneumoniae (IPD), and Haemophilus influenzae (Hi-D). These species comprise different serogroups and serotypes that impact transmissibility and virulence. We evaluated type- and pathogen-specific changes in invasive bacterial disease epidemiology in the Netherlands during the first year of the SARS-CoV-2 pandemic. Cases were based on nationwide surveillance for five bacterial species with either respiratory (IMD, IPD, Hi-D) or non-respiratory (controls) transmission routes and were compared from the pre-COVID period (April 2015-March 2020) to the first COVID-19 year (April 2020-March 2021). IMD, IPD, and Hi-D cases decreased by 78%, 67%, and 35%, respectively, in the first COVID-19 year compared to the pre-COVID period, although effects differed per age group. Serogroup B-IMD declined by 61%, while serogroup W and Y-IMD decreased >90%. IPD caused by serotypes 7F, 15A, 12F, 33F, and 8 showed the most pronounced decline (≥76%). In contrast to an overall decrease in Hi-D cases, vaccine-preventable serotype b (Hib) increased by 51%. COVID-19 control measures had pathogen- and type-specific effects related to invasive infections. Continued surveillance is critical to monitor potential rebound effects once restriction measures are lifted and transmission is resumed.

13.
Sci Rep ; 12(1): 5935, 2022 04 08.
Article in English | MEDLINE | ID: covidwho-1784029

ABSTRACT

mRNA- and vector-based vaccines are used at a large scale to prevent COVID-19. We compared Spike S1-specific (S1) IgG antibodies after vaccination with mRNA-based (Comirnaty, Spikevax) or vector-based (Janssen, Vaxzevria) vaccines, using samples from a Dutch nationwide cohort. In adults 18-64 years old (n = 2412), the median vaccination interval between the two doses was 77 days for Vaxzevria (interquartile range, IQR: 69-77), 35 days (28-35) for Comirnaty and 33 days (28-35) for Spikevax. mRNA vaccines induced faster inclines and higher S1 antibodies compared to vector-based vaccines. For all vaccines, one dose resulted in boosting of S1 antibodies in adults with a history of SARS-CoV-2 infection. For Comirnaty, two to four months following the second dose (n = 196), S1 antibodies in adults aged 18-64 years old (436 BAU/mL, IQR: 328-891) were less variable and median concentrations higher compared to those in persons ≥ 80 years old (366, 177-743), but differences were not statistically significant (p > 0.100). Nearly all participants seroconverted following COVID-19 vaccination, including the aging population. These data confirm results from controlled vaccine trials in a general population, including vulnerable groups.


Subject(s)
COVID-19 , SARS-CoV-2 , Adolescent , Adult , Aged , Aged, 80 and over , Antibodies, Viral , COVID-19/prevention & control , COVID-19 Vaccines , Humans , Immunoglobulin G , Kinetics , Middle Aged , RNA, Messenger , SARS-CoV-2/genetics , Vaccination , Young Adult
14.
Vaccine ; 40(15): 2251-2257, 2022 04 01.
Article in English | MEDLINE | ID: covidwho-1730146

ABSTRACT

BACKGROUND: With COVID-19 vaccine roll-out ongoing in many countries globally, monitoring of breakthrough infections is of great importance. Antibodies persist in the blood after a severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) infection. Since COVID-19 vaccines induce immune response to the Spike protein of the virus, which is the main serosurveillance target to date, alternative targets should be explored to distinguish infection from vaccination. METHODS: Multiplex immunoassay data from 1,513 SARS-CoV-2 RT-qPCR-tested individuals (352 positive and 1,161 negative) without COVID-19 vaccination history were used to determine the accuracy of Nucleoprotein-specific immunoglobulin G (IgG) in detecting past SARS-CoV-2 infection. We also described Spike S1 and Nucleoprotein-specific IgG responses in 230 COVID-19 vaccinated individuals (Pfizer/BioNTech). RESULTS: The sensitivity of Nucleoprotein seropositivity was 85% (95% confidence interval: 80-90%) for mild COVID-19 in the first two months following symptom onset. Sensitivity was lower in asymptomatic individuals (67%, 50-81%). Participants who had experienced a SARS-CoV-2 infection up to 11 months preceding vaccination, as assessed by Spike S1 seropositivity or RT-qPCR, produced 2.7-fold higher median levels of IgG to Spike S1 ≥ 14 days after the first dose as compared to those unexposed to SARS-CoV-2 at ≥ 7 days after the second dose (p = 0.011). Nucleoprotein-specific IgG concentrations were not affected by vaccination in infection-naïve participants. CONCLUSIONS: Serological responses to Nucleoprotein may prove helpful in identifying SARS-CoV-2 infections after vaccination. Furthermore, it can help interpret IgG to Spike S1 after COVID-19 vaccination as particularly high responses shortly after vaccination could be explained by prior exposure history.


Subject(s)
COVID-19 Vaccines , COVID-19 , Antibodies, Viral , COVID-19/diagnosis , COVID-19/prevention & control , Humans , Nucleoproteins , SARS-CoV-2 , Spike Glycoprotein, Coronavirus , Vaccination
15.
Clin Infect Dis ; 73(12): 2318-2321, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1599037

ABSTRACT

This large, nationwide, population-based, seroepidemiological study provides evidence of the effectiveness of physical distancing (>1.5 m) and indoor group size reductions in reducing severe acute respiratory syndrome coronavirus 2 infection. Additionally, young adults may play an important role in viral spread, contrary to children up until age 12 years with whom close contact is permitted. CLINICAL TRIALS REGISTRATION: NTR8473.


Subject(s)
COVID-19 , SARS-CoV-2 , Child , Humans , Netherlands/epidemiology , Physical Distancing , Research , Young Adult
16.
Clin Infect Dis ; 73(12): 2155-2162, 2021 12 16.
Article in English | MEDLINE | ID: covidwho-1592795

ABSTRACT

BACKGROUND: Assessing the duration of immunity following infection with severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) is a first priority to gauge the degree of protection following infection. Such knowledge is lacking, especially in the general population. Here, we studied changes in immunoglobulin isotype seropositivity and immunoglobulin G (IgG) binding strength of SARS-CoV-2-specific serum antibodies up to 7 months following onset of symptoms in a nationwide sample. METHODS: Participants from a prospective representative serological study in the Netherlands were included based on IgG seroconversion to the spike S1 protein of SARS-CoV-2 (N = 353), with up to 3 consecutive serum samples per seroconverted participant (N = 738). Immunoglobulin M (IgM), immunoglobulin A (IgA), and IgG antibody concentrations to S1, and increase in IgG avidity in relation to time since onset of disease symptoms, were determined. RESULTS: While SARS-CoV-2-specific IgM and IgA antibodies declined rapidly after the first month after disease onset, specific IgG was still present in 92% (95% confidence interval [CI], 89%-95%) of the participants after 7 months. The estimated 2-fold decrease of IgG antibodies was 158 days (95% CI, 136-189 days). Concentrations were sustained better in persons reporting significant symptoms compared to asymptomatic persons or those with mild upper respiratory complaints only. Similarly, avidity of IgG antibodies for symptomatic persons showed a steeper increase over time compared with persons with mild or no symptoms (P = .022). CONCLUSIONS: SARS-CoV-2-specific IgG antibodies persist and show increasing avidity over time, indicative of underlying immune maturation. These data support development of immune memory against SARS-CoV-2, providing insight into protection of the general unvaccinated part of the population. CLINICAL TRIALS REGISTRATION: NL8473 (the Dutch trial registry).


Subject(s)
COVID-19 , SARS-CoV-2 , Humans , Netherlands/epidemiology , Prospective Studies
18.
Vaccine ; 40(1): 59-66, 2022 01 03.
Article in English | MEDLINE | ID: covidwho-1565666

ABSTRACT

BACKGROUND: Meningococcal serogroup C (MenC) vaccination was introduced for 14-month-olds in the Netherlands in 2002, alongside a mass campaign for 1-18 year-olds. Due to an outbreak of serogroup W disease, MenC vaccination was replaced for MenACWY vaccination in 2018, next to introduction of a booster at 14 years of age and a catch-up campaign for 14-18 year-olds. We assessed meningococcal ACWY antibodies across the Dutch population in 2016/17 and 2020. METHODS: In a nationwide cross-sectional serosurvey in 2016/17, sera from participants aged 0-89 years (n = 6886) were tested for MenACWY-polysaccharide-specific (PS) serum IgG concentrations, and functional MenACWY antibody titers were determined in subsets. Moreover, longitudinal samples collected in 2020 (n = 1782) were measured for MenACWY-PS serum IgG concentrations. RESULTS: MenC antibody levels were low, except in recently vaccinated 14-23 month-olds and individuals who were vaccinated as teenagers in 2002, with seroprevalence of 59% and 20-46%, respectively. Meningococcal AWY antibody levels were overall low both in 2016/17 and in 2020. Naturally-acquired MenW immunity was limited in 2020 despite the recent serogroup W outbreak. CONCLUSIONS: This study demonstrates waning of MenC immunity 15 years after a mass campaign in the Netherlands. Furthermore, it highlights the lack of meningococcal AWY immunity across the population and underlines the importance of the recently introduced MenACWY (booster) vaccination.


Subject(s)
Meningococcal Infections , Meningococcal Vaccines , Neisseria meningitidis, Serogroup C , Adolescent , Antibodies, Bacterial , Cross-Sectional Studies , Humans , Immunization, Secondary , Meningococcal Infections/epidemiology , Meningococcal Infections/prevention & control , Netherlands/epidemiology , Seroepidemiologic Studies , Vaccines, Conjugate
19.
Euro Surveill ; 26(44)2021 11.
Article in English | MEDLINE | ID: covidwho-1503826

ABSTRACT

We estimated SARS-CoV-2 vaccine effectiveness against onward transmission by comparing secondary attack rates among household members for vaccinated and unvaccinated index cases, based on source and contact tracing data collected when the Delta variant was dominant. Effectiveness of full vaccination of the index case against transmission to unvaccinated and fully vaccinated household contacts, respectively, was 63% (95% confidence interval (CI): 46-75) and 40% (95% CI: 20-54), in addition to the direct protection of vaccination of contacts against infection.


Subject(s)
COVID-19 , Vaccines , COVID-19 Vaccines , Family Characteristics , Humans , Netherlands/epidemiology , SARS-CoV-2
20.
Euro Surveill ; 26(42)2021 10.
Article in English | MEDLINE | ID: covidwho-1485004

ABSTRACT

The incidence of most respiratory-transmitted diseases decreased during the COVID-19 pandemic as a result of containment measures. In contrast, in the Netherlands we noted an increase in invasive disease caused by Haemophilus influenzae b (Hib) (from < 0.3/100,000 before 2019 to 0.39 and 0.33/100,000 in 2020 and 2021) in vaccinated and unvaccinated age groups. We did not find a change in vaccine effectiveness against Hib invasive disease (effectiveness > 90%). We discuss factors that may have contributed to this rise.


Subject(s)
COVID-19 , Haemophilus Infections , Haemophilus Vaccines , Haemophilus influenzae type b , Haemophilus Infections/epidemiology , Haemophilus Infections/prevention & control , Haemophilus influenzae , Humans , Infant , Netherlands/epidemiology , Pandemics , SARS-CoV-2
SELECTION OF CITATIONS
SEARCH DETAIL